Notes on GNN

记录GNN学习之路.

pyg-team/pytorch_geometric

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

  • Documentation: PYG DOCUMENTATION
  • Tutorial:
    • COLAB NOTEBOOKS AND VIDEO TUTORIALS
    • AntonioLonga/PytorchGeometricTutorial
  • Youtube Channel: Antonio Longa

Import PyG in Colab

pyg-team/pytorch_geometric在Colab导入报错, 可能原因在于cuda版本不匹配, 解决方法见ameya98/install_PyG.py, 代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Add this in a Google Colab cell to install the correct version of Pytorch Geometric.
import torch

def format_pytorch_version(version):
return version.split('+')[0]

TORCH_version = torch.__version__
TORCH = format_pytorch_version(TORCH_version)

def format_cuda_version(version):
return 'cu' + version.replace('.', '')

CUDA_version = torch.version.cuda
CUDA = format_cuda_version(CUDA_version)

!pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
!pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
!pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
!pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
!pip install torch-geometric

dmlc/dgl

DGL is an easy-to-use, high performance and scalable Python package for deep learning on graphs. DGL is framework agnostic, meaning if a deep graph model is a component of an end-to-end application, the rest of the logics can be implemented in any major frameworks, such as PyTorch, Apache MXNet or TensorFlow.

  • 用户指南